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Abstract. The logarithmic penurbation theory is modified slightly in order to deal with 
excited states. Instead ofconsidering a real wavefunction describing the physical stationary 
state, we consider a complex wavefunction at the same energy, by mixing in the ghost 
state. For excited bound slates, the former has nodes, while the latter is guaranteed not to 
have any nodes, and can be represented simply as exp(-G),  to which the logarithmic 
perturbation method can be applied in a straightforward manner. The physical entities 
(the energy corrections) are independent of the amount af mixing of the ghost state. The 
connection to the Green function method is also shown. The freedom 10 mix in the ghost 
state allows us to justify an ad hoc approach whereby the simple version of the logarithmic 
perturbation theory is applied to excited bound states. The formalism is illustrated with 
simple examples. 

1. Introduction 

Bound state perturbation theory has played a n  important role i n  the study of a wide 
range of problems since the introduction of quantum mechanics. By considering the 
logarithm of the wavefunction instead of the wavefunction itself, the non-relativistic 
Schrodinger equation for bound states is transformed to the nonlinear Ricatti form 
[l-51. Upon a perturbation expansion, the differential equations that determine the 
perturbative corrections become linear again, order by order [4]. These linear differen- 
tial equations are first order. For general three-dimensional problems, these linear 
differential equations involve the divergence of a vector, that in turn is the gradient 
of a scalar field [ 5 ] .  Thus effectively, one still deals with a second-order differential 
equation, though no longer an  eigenvalue problem. However, for one-dimensional 
problems, this transformation, via the logarithm of the wavefunction and its derivative, 
provides a very convenient way to transform the second-order differential equation 
into two uncoupled first order differential equations, enabling the perturbative solutions 
to be obtained by quadratures, order by order [4]. We refer to this as the fundamental 
logarithmic perturbation method. 

For excited bound states in one dimension, the wavefunction has zeros and its 
logarithm is singular, so that the simple version of logarithmic perturbation theory 
breaks down. A way to bypass this difficulty has been suggested earlier [4]. In this 
procedure (the node factorization method) the nodes are first factorized and then the 
logarithm of the remaining non-zero envelope is taken. The perturbative shifts in the 
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nodal positions, the energies, a n d  the logarithm of the wavefunction envelope are then 
obtainable in quadratures. But this method requires exact knowledge o f  the positions 
of the nodes in the unperturbed wavefunction and that their perturbative shifts be 
accounted for order by order. Except for the low-lying excited states, this knowledge 
is generally hard t o  obtain, even though the exact analytic form of the  unperturbed 
wavefunction is available. For example, the zeros of a high-order polynomial (Hermite, 
Laguerre, etc) are not easy to find. Thus, even though a valid prescription to deal with 
exciied bound Sidie perturbations in one  dimension is available, i t  is dificult to carry 
out in practice. The purpose of the present paper is to introduce an  alternative method 
to bypass the nodal difficulty. Instead of considering a real wavefunction (which 
contains zeros) describing the stationary state, we consider a complex function at the 
same energy, carrying a non-zero probability flux. The real part of this complex 
wavefunction is the physical state, while the imaginary part is given by U times the 
ghosi siaie (ihe second soiuiioii, usuaiiy noi normalizable). T'nis complex wavefunction 
is guaranteed not t o  have any zeros and  thus has a regular logarithm. The  logarithmic 
perturbation method can then b e  applied in a straightforward manner. We shall show 
that the perturbative corrections to the energy (the physical entity) is independent of 
U, the amount of mixing of the  ghost state wavefunction, and we shall demonstrate 
explicitly the equivalence to the  Green function method, u p  to the third order. We 
also justify an ad hoc approach whereby the usual logarithmic perturbation theory can 
be applied to excited states without modification. 

Wentzel [ l ]  seems to be the first to use the logarithmic transformation to Ricatti 
form in the study of the perturbative Stark shifts in hydrogen in parabolic coordinates. 
Since then, the technique of logarithmic perturbation expansion has been rediscovered 
and improved upon over and over again [2-151. The logarithmic perturbation method 
is nct :he a;!y one !ha! bypase: !he use af !he Greex F-nctio; or :he SUE ave: 
intermediate states. Other direct attempts to obtain the perturbative corrections to the 
wavefunction as the solution of inhomogeneous multidimensional differential equations 
were also made by Schrodinger [16], Podolsky [ I 7 1  and Sternheimer [18]. An elegant 
method of calculating sum rules was also introduced by Dalgarno and  Lewis [19]. A 
perturbation method to calculate the energy corrections without calculation of the 
pert~rbed wivefCnctions by =se of!he hypervirie! re!etions wes In t rodxed  by Swenson 
and Danforth [20] for the anharmonic oscillator and applied to the hydrogen atom 
by Killingbeck [21] and by Grant and Lai 1221. 

The complexity of the application of logarithmic perturbation expansion obviously 
increases with the dimensionality of the system. As pointed out earlier, the perturbative 
corrections are n o  longer obtainable in quadrature form when the perturbation is 
non-trivial as the differential equations involve the divergence of a vector, that is in 
turn the gradient of a scalar field [ 5 ] .  Nevertheless, in certain situations, suitable 
separation of variables can be used to obtain the perturbative corrections as solutions 
to these differential equations [23]. An example is found in the calculation of hydrogenic 
dipole sum rule [24]. Recently, we have succeeded in extending this calculation of 
hydrogenic multipole sum rules to arbitrary multipolarity and  arbitrary dimensions [25]. 

In  section 2: we shall develop our formalism of using complex wavefunction in 
excited bound state logarithmic perturbation theory. In  section 3, we shall obtain 
explicit formulae for the energy corrections. We shall show that the physical entities 
are independent of the amount o f  mixing of the ghost state and  establish the equivalence 
of the present method with the Green function method, u p  to and  including the third 
order. In section 4, we illustrate our  formalism with the quartic anharmonic oscillator. 

C K Au et al 
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We show that the ghost state mixing method gives an unambiguous answer (in section 
4.2). The straightforward application of logarithmic perturbation theory (i.e. without 
first factoring out the zeros of the unperturbed wavefunction) is clearly invalid for 
excited states, leading to formally divergent expressions whose values are ambiguous. 
This will be seen explicitly in section 4.1. Yet it has been found [ZO] that by implicitly 
adopting an  ad hoc prescription for dealing with such ambiguous expression, the 
straightforward perturbation method miraculously gives the correct energy correction, 
at least to second order. This prescription is spelled out precisely in section 4.1 and 
proved to be  correct in section 5. The proof shows that a small but non-zero admixture 
of the ghost state has the simple effect of pushing the nodal singularities slightly off 
the real axis, thus regulating the ambiguous expressions. Some concluding remarks 
are given in section 6. An explicit example is given in the appendix to demonstrate 
the independence of the energy shifts on the amount of ghost state mixing for a 
stretched square well. 

2. Formalism 

2. I .  Defining functions 

Consider a one-dimensional system defined by the Hamiltonian 

1 d 2  
2 d x  

H = -- y+ V ( x )  + A U ( x )  = H,+ A U ( x )  (2.1) 

where AU is the perturbing potential and A is a formal small parameter. In  order to 
mimic a radial problem, we shall assume that the particle is restricted to the positive 
halfline by an  infinite potential V ( x ) + A U ( x ) = m  for x<O. Generalization to a full 
line problem is straightforward. The wavefunction satisfies 

H @ = E @  (2.2) 
where the physical solution and the value of the energy E are selected by the boundary 
condition 

@(O) = 0 (2.3a) 

@(us) = 0. (2.36) 

The eigenvalue equation (2.2) admits a second solution, the ghost state ~ ( x ) ,  related 
to 4(x )  via 1261 

where the normalization has been chosen so that the Wronskian satisfies 

w - ~ ' ( x ) x ( x ) - C J ( x ) ~ ' ( x )  = I ( 2 . 5 )  

and where '=d /dx .  Note that the lower limit in (2.4) is not specified. This means that 
one can mix any amount of @ in x without upsetting the Wronskian property. In  the 
example of the anharmonic oscillator to be considered in section 4 below, it seems 
natural to choose x and @ t o  have opposite parities. Instead of dealing with the physical 
state CJ or the ghost state x, we shall choose to consider the auxiliary function $ 

(2.6) $ = CJ + iux 
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where U is an arbitrary real and non-zero constant. It is obvious that J, does not have 
any zero, because for II, to vanish, it is necessary for both @ and x to vanish, which 
violates (2.5). Hence, a logarithmic perturbation expansion on J, can be developed, 
in analogy with the ground state case discussed by Aharonov and  Au [4]. Specifically 
we have 

(2 .7)  

C K Au et a /  

$=exp( -G)  g = G' 

G = A'Gi E =x A'€, g = 1 A'g,. (2.8) 

and we expand G, E and g in power series in A:  

Since JI is the solution to a second-order differential equation, we can fix 

* ( O )  = J , O ( O )  $ ' ( O )  = *XO)  (2 .90 )  

where the subscript zero indicates the unperturbed state. For such a choice of boundary 
conditions, we have 

for all i # 0. (2.96) Gj(0) = 0 = g j (o )  

Then proceeding as in [4], we get 

g.(x) = h , ( x ) / p ( x )  ( 2 . l O a )  

h , ( x ) - 2  'F , (y)p(y)dy  (2.10b) 

(2.10c) F n ( y ) = E , - f i n ( y )  

P ( X I  = $o(x)2 (2.11) 

I: 
where 

f i , ( x ) =  U ( x )  ( 2 . 1 2 ~ )  

fiAx,= -- g , ( x ) g n - , ( x )  n > l  (2.126) 
1 n- l  

2 i = ,  

For n > 1, fi,, depends only on lower-order quantities. There are only two differences 
from the treatment in [4]: the lower limit in  (2.106) is x=O,  where the boundary 
condition is imposed, rather than x = -CO; also fin may now be complex for n > 1. 

2.2. Quantization 

Equation (2.10) allows us to find g.(x)  once E, is given, but E, is not yet known. 
This is no  surprise since we have not yet imposed the condition that the state in 
question is a bound state. Let the unperturbed wavefunction have the asymptotic 
behaviour 

*(]--ia e"'." x-CO (2.13) 

where the reason for inserting -i will become apparent, and 

dy(2[V(y)-EJ}"'>O (2.14) 
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is the W K B  exponent. Of course there is also a sub-asymptotic term going like e-W. 
The unperturbed physical solution then behaves as 

Qo= Re Jro- ( Im a )  eW1"' X+,X (2.15) 

and since the unperturbed wavefunction describes a bound state, we conclude that a 
is real. 

Next consider the full wavefunction and define 

e C C G =  p+iQ (2.16) 

where P, Q are real. Then 

(2.17) 

For a physical state, @(x)+O as x", hence we must have 0 - 0  (in fact faster than 

as well. (Strictly speaking, Im( G - Go) + m v ,  m =integer; however, if this is to hold 
order by order in A, then m = O . )  So the quantization condition is 

w # = +,,e"~~"- (-ia e")( P + i Q )  @ = R e J r - a Q e .  

,-"! C:.."- +ha :..."A 4 n F ~ u . . / C -  '2 > .,qn:rhnr I.,P m..Ct hqrin T m 1 C - C  i -n ,. UL'lCC L l l L  ""'x6"l'xlJ pa.' "1 Lay," -0, *'...ll.lLl, ""C L l l Y l L  .,'&I1 .... \ v U", , Y 

(2.18) 

Written more explicitly, 

(2.19) 

Since fin involves lower order quantities only, (2.19) determines E, ,  which is then 
put into (2.10) to find g,, completing the hierarchy. So in principle we have a method 
for doir?g !he b o c d  stz!e penGrba!ion order by order, osing on-she!! information on!y 
(i.e. the unperturbed states at  other energies are not needed) and involving quadratures 
only. 

3. The energy corrections 

3.1. Generalform 

The energy correction in (2.19) can he written as 

Im J (  f in)  
Im J ( 1 )  

E, = 

where we have used the notation 

for any function S. In this section we shall show that J(S) can be reduced to a single 
integral. From (2.5), (2.6) and (2.9), we have 

#s@b-Jr;4,1=iu (3.3) 

or 

(3.4) 
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which allows us to write l / p  = l/$i as a derivative: 

C K Au et a/ 

p iu d x  

Next interchange order of integration in (3.2): 

(3.5) 

(3.6) 

(3.7) 

(3.10) 

(3.11) 

We refer to this method of obtaining the energy shifts via (3,9)-(3,11) as  the explicit 
ghost state method. Note that D depends only on the physical wavefunction @ but 
not on Im $ or on U, and is just the usual normalizing integral which can be set equal 
to 1. On general ground, the dependence on U must cancel in N,. This property will 
be verified u p  to and  including the third-order energy shift. The most direct way of 
applying the present formalism is to evaluate (3.9)-(3.11) without further manipula- 
tions. However, since N ,  has a n  apparent u-dependence through #O and U,, i t  is 
necessary to verify, through a simple example, that the computed energy shift is indeed 
u-independent. This we shall d o  for the second-order energy shift for a stretched 
square well in the appendix. 

3.2. The Jirst-order energy correction 

For the first-order correction, U ,  = U is purely real, so the correction reduces to 
- 

as expected. We assume D is properly normalized to 1 
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3.3. n e  second-order energy correction 

From (3.9)-(3.11) and (2.10)-(2.12), we see that 

On using (3.5) and integrating by part once, this becomes 

(3.13) 

(3.14) 

On substituting (2.10b) for h , ,  we get 

Since @", xo and F, are all real functions, on taking the imaginary part, this becomes 

with 

F 1 ( x ) = E L -  U ( X ) .  (3.17) 

Note that the u-dependence has disappeared and  that ,yo is fixed by the Wronskian 
being equal to 1 .  

3.4. Connection to the Green function method 

We shall now show that (3.16) is equivalent to the second order energy shift in terms 

with the help of the step function 9 and the resulting expression is then symmetrized, 
arriving at 

E , =  jc:dy d z  @dy)F,(y)%, z ) F , ( z ) % ( z )  (3.18) 

o f the  Green fut?G!ion. The upper ! h i !  of!he inner in!egra! can be exte.ded to infinity 

where 

9(y, 2) = 2[@,,(Y)XO(Z)NY - 2 )  + X d Y ) @ " ( Z ) ~ ( Z  -y)I. (3.19) 
Equation (3.19) is the usual construction o f  the unperturbed Green function subject 
to the Wronskian property io (2.5) and  it can  be trivially verified that 

'WJ, ~ ) = ( y / ( E o -  H o ) - ' l z ) c  (YIY/z) (3.20) 
since @" and ro are both eigenfunctions of H ,  with eigenvalue E!! and according to (3.3) 

@XZ)X"(Z) -@,,(z)xb(z) = 1. (3.21) 
The appearance of F, instead of the perturbation U in (3.18) ensures that the initial 
state is projected out of the Green function. Then the expression in (3.19) is 
equivalent to 

€2 =(@"I UQW~l@n) (3.22) 
where 

Q = 1 -I@")(% (3.23) 
is the projection operator. Equation (3.23) is the usual expression for the second order 
energy shift. 
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3.5. The third-order energy correciion 

According to (3.9), the third order energy shift is given by 

C K Au et al 

E,= -Re jomdy  @ O ( y ) ~ o ( y )  h,(y)h,(y). 
P(Y) '  

(3.24) 

The best way to remove the u-dependence would seem to be  by taking U - 0 ,  but o n  
the face of i t ;  this integrand ~eem.s to have a second-arder pnle i f  c is set q u a !  
zero. However, by means of the technique used in the previous subsection through the 
use of ( 3 . 9 ,  this singularity is removable by repeated integrations by parts. Upon doing 
so, the u-dependent quantities are found to vanish. The procedure, though tedious, is 
straightforward. We shall only give the final result here: 

m 

E,=-?, ~ c d X ~ , ( X ) 2 F ; ( X ) ~ l ; ! . X ) i l , ~ . X ) ~  (3.25) 
J O  

where 

J , ( x ) =  1: dy @(Y)F,(Y) / ~ d z x ~ ( z ) F d z )  (3.26) 

and 

By a direct substitution of (3.19), (3.20) and (3.21), we verify that the usual expression 
for the third-order energy shift 

€3 = (@ol ~ O ~ O ~ Q W ~ l @ o )  (3.29) 

written here fer !he simp!e case Ei = 0 withnu! !os$ nf genera!ity is identic.! to !he 
expression for E, given in  (3.25). We refer to this method of obtaining the energy 
shifts via (3.16) and (3.25) as the ghost state retention method. 

3.6. Implication 

The fact that the physical entities (the energy corrections) are independent of u indicates 
that one  can even set U zero. This implies that for excited states, the singularities a t  
the nodal points are removable. However, for an arbitrary situation where the analytic 
form of the wavefunction is unavailable, one  may not be able to perform integration 
by parts to remove these apparent singularities. In  this case, one  is bound to encounter 
the logarithmic singularities at the  nodes if the wavefunction is taken to be  that of the 
physical state alone. By mixing in the ghost state, the zeros are bypassed. by as much 
as is convenient in a numerical calculation. 

In the next section, we shall use the quartic x4 anharmonic perturbation on the 
third excited state of the harmonic oscillator and  obtain the second-order energy shift 
via (3.13) with U equal to zero (the a d  hoc straightforward logarithmic perturbation 
method) and via (3.16) (the ghost state retention method). The  answer is identical to 
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that obtained with the sum over intermediate states method. While the ghost state 
retention method gives an unambiguous answer, we shall justify the ad hoc prescription 
of the usual logarithmic perturbation theory without any modification. 

4. An example: the quartic anharmonic oscillator 

We consider here the perturbation Ax4 to the Hamiltonian Ho = ; ( p ' t  x2), and concern 
ourselves with the third excited state, n =3,  which may be regarded as the first excited 
state of the half-line problem satisfying (2 .30) .  By the usual Rayleigh-Schrodinger 
perturbation theory, one finds 

(4.1) E =1+B 2 4 A - q A 2 + . . . .  

4.1. The second-order energy shiji via the fundamental logarithmic 
perturbation method 

The unperturbed state under consideration is 

(4.2) 
~ u ( x ) = ~ [ - ~ x 3 + x ~ e ~ 1 " 2 .  & 

According to (3.17), we have 

A 
4 

F, (x) = - [75  - 4x4]. (4.3) 

Putting this into (2 .10b) ,  with u=O, then gives 

h , ( x )  =Ax'P(x) e-"'/(3&) 

where 

P ( x )  =8x6+ 12x4-90~2+225. 

When this is inserted into (3.13), with U =0, we find 

(4.4) 

(4.5) 

This expression is ill-defined on account of the pole at the node of at x = x, =4. 
However, if we adopt the ad hoc prescription of treating such singular factors as 
distributions and integrating by parts: 

then (4.6) becomes non-singular and can be evaluated. Note that the polynomial in 
the integrand in (4.6) vanishes rapidly at x = 0 (in fact like x") so that no surface terms 
are introduced upon integration by parts. The result of evaluating E? by this prescription 
is in agreement with (4.1). 

I n  section 5 we shall show that such a prescription is indeed appropriate and also 
give an equivalent and sometimes more convenient method of evaluating integrals 
such as (4.7). 
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4.2. The second-order energy correction via the ghost state retention method 

The ghost state that satisfies the normalization condition (2 .5)  is 

C K Au et a1 

1 r ~ / 4  

& x0(x) =- [(2x3-3x) eC'"'v(x) - (x2-  1) e'"'] (4.8) 

where 

~ ( x )  = 1; e" dt. (4.8a) 

Note that the ghost state of energy n +f  can be obtained from the ghost state of energy 
f by using the raising operator in the usual way. Then the second order energy shift 
E,  according to (3.16) is of the form 

dx e-''Q(x)[ Y , ( x )  + Y2(x)] (4.9) 

where Q(x) and Y2(x)  are polynomials, and 

Y , ( x ) =  - dye-y2Q(y)T(y) (4.10) l: 
for the same Q. It turns out that Q can be written as 

d 
-[e-"2R(y)] =eC"Q(y) (4.11) 
dy 

where R is another polynomial; in fact 

R(y) = 8y9+ 12y' -90y5+225y'. 

Using (4.11) in (4.10) and integrating by parts 

(4.12) 

Y , ( X ) = - ~ ~ " R ( ~ ) ~ ( X ) + J  0 " d y R ( y ) .  (4.13) 

Now Y2,  and the second term in Y! when put into (4.9): is of the form 

1"- dx e-"' x (polynomial) (4.14) 

and is readily evaluated. The first term in Y ,  contributes 

(4.15) 

which is again of the form (4.14), and hence readily evaluated. Upon carrying out the 
arithmetic, one finds that El agrees with the second-order term in (4.1). 

It is stressed that there is no ambiguity and no room for ad hoc prescriptions in  
this evaluation. 



Logarithmic perturbation theory without nodes 3847 

5. Justification of ad hoc prescription 

We have seen that the ghost-state method gives an ambiguous result, while the 
straightforward perturbation method (i.e. setting U = 0  from the start) contains an 
ambiguity which, upon being specified by  the ad hoc prescription of integrating by 
parts, does yield the correct answer. In  this section, we sketch a justification of this 
prescription. We only use the properties of the wavefunctions o f t h e  physical and ghost 
siairs near ihe zeros o f t h e  physicai state, in accordance with the Wronskian condition 
(2 .5) .  

Start with the ghost-state method and  consider the possibility of taking u+0. The 
only trouble occurs near the nodes xi of @,)(x), in integrals of the form 

Except for the  factors of 
which case f ( x )  is real. Now, near x,, @<, has a first-order zero, say 

in the denominator, everywhere else we may set U = 0, in 

(5.2) O"(X) = a ( x  - x,) + . . . 
and by (2.5) we see that 

i 
,y"(X) =-+P(x -x,) +. . . (5.3) a 

from which it is easy to see that for U +  0, there is a root of $,) at the position 

2, = x, - i u / a ' + O ( u 2 )  (5.4) 

and the singular (hence ambiguous when u = 0 )  part of (5.1) is of the form 

Re dxf(x)(x-:,)-" ( 5 . 5 )  I 
and the same manipulations as in (4.7) can be  applied. However, in this case, since 
2, is off the real axis, these manipulations are not merely formal, but fully justified. 
After all the integrations by parts have been performed, we then take U-0, which 
simpiy turns i, into x,, giving the finai form in (4.7). w e  refer to this as the iimiting 
ghost state method. 

An alternative method is to differentiate with respect to the parameter i,: 

Re dxf (x ) (x - i j ) - "= -  ( - )"-I Re dxf(x)(x-.?()- '  I ( u - I ) !  d i ;  

where P denotes principal value. This method is obviously equivalent to (4.7) and is 
in fact more convenient because there is no need to differentiatef; and  principal-value 
integrals are often tabulated. 

6. Concluding remarks 

We have introduced a method by which the singularities in the logarithmic perturbation 
theory for excited hound states can be bypassed. This method involves mixing the 
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ghost-state solution with the physical state solution. We have shown explicitly up  to 
and including the third-order energy shift that the physical entities are independent 
of the amount of mixing of the ghost state and have demonstrated the equivalence 
with the usual Green function method. The fact that the physical entities are indepen- 
dent of the mixing of the ghost state implies that singularities encountered in the 
straightforward logarithmic perturbation theory for excited bound states must be 
removable singularities, and are indeed removed by the ad hoc prescription of integra- 

and provides a justification of such manoeuvres of integration by parts. The limit of 
zero mixing coefficient is well defined and the formal procedures reduces to the ad 
hoc procedure. We have demonstrated this explicitly for the third excited state of the 
harmonic oscillator with the Ax4 perturbation. However, in a situation, such as a 
numerical calculation, where the procedure to remove the singularities is impractical 
to carry OG?, our method provider B convenient way o m  We emphasize that we retain 
all the advantages of ordinarily logarithmic perturbation theory: all higher-order 
corrections are obtainable in a hierarchical scheme from a knowledge of the unper- 
turbed solution alone. 

As another example, we have also successfully applied the ad hoc procedure to 
the 2s state of the hydrogen atom in a rescaled Coulomb potential -(1 + A ) e * / r  where 
A is a small parameter. The calculation is straightforward and the answer agrees with 
the exact calculation. 

There are many variants of the logarithmic perturbation method, and we briefly 
summarize their differences and relationship with each other. (1) There is the original, 
straightforward, use of the logarithmic perturbation theory, derived for the ground 
state, but logically invalid for excited states on account of the nodal problem. Neverthe- 
less, with an implicit ad hoc prescription, it somehow seems to work for excited states 
as well, at least for second order. This is referred to as the fundamental logarithmic 
perturbation method. ( 2 )  One way to cure the nodal problem is to factor out the zeros. 
This is referred to as the node factorization method, as discussed in detail earlier in 
[4]. Within the ghost-state method formulated in section 3 of this paper, there are 
several possibilities. (3 )  We can simply use the formulas as derived in section 3.1, 
which contains U explicitly, to evaluate the energy corrections numerically. This is 
referred to as the explicit ghost-state method. In appendix A, we show, via an example, 
that the results are indeed u-independent. (4) Alternatively, we can go through a series 
of algebraic manipulations, as shown in sections 3.3 and 3.5, to obtain results from 
which U disappears completely, but in which the ghost state appears. This is referred 
to as the ghost-state retention method. ( 5 )  Alternatively, we can simply take the limit 
u+O, and in section 5 we show that this limit justifies the use of the fundamental 
method (1) for excited bound states as we have demonstrated in section 4.1. This is 
referred to as the limiting ghost-state method. Most of these variants are illustrated 
via examples. 
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Appendix. An explicit demonstration of ghost state mixing independence for the 
energy shifts 

In this appendix, we choose a simple example to show that the second order energy 
shift computed numerically according to (3.9)-(3.11) (the explicit ghost-state method) 
is indeed independent of the amount of ghost-state mixing in the wavefunction. To 
d o  so, we consider the second excited state of the stretched square well, defined by 
the unperturbed potential. 

O s x s b  
otherwise 

U ( x )  = 

and the exact potential 
O s x s b + d  
otherwise 

U ( x ) +  A V(x) = 

where as an  example, we choose the parameter values 
V" = - 100 b = l  d =0.1. 

From (3.10) and  (3.11),  the second-order energy corrections can be written as the sum 
of the following three terms: 

x 1: d z  2 ~ ~ , ( ~ ) ~ d ~ ) x 0 ( ~ )  (A61 

where the unperturbed physical wavefunction #, and the corresponding ghost state xu 
are readily written down and we have assumed that is normalized so that D in 
(3.11) is unity. We have evaluated I, ,  l2 and I, numerically for various values of U 
with the results shown in table 1. It is seen that although each of these depends on U, 
their sum is independent of U and indeed agrees well with the exact value -1.70845. 

Table 1. Values of the  integrals I , ,  I ,  and I ,  for various c to demonstrate independence 
of the amount of  ghost state mining. Data refer 10 the second-order energy shift of [he 
second excited state of the stretched square well. 

0.02 
0.05 
0.1 
0.2 
0.5 
I .o 
2.0 
5.0 

10.0 

-1,0816499 
O . l O 5  7666 
0.618 2073 
0.5269681 
0.393 6475 
0.371 7098 
0.367 2634 
0.3663202 
0.3662163 

-1,3002616 
-1.347 2726 
-0.727 7554 
-0.1937130 

0.035 81 I 9  
0.049 5207 
0.0348073 
0.016 7103 
0.008 8570 

0.673 4608 
-0.466 9446 
~ 1.598 YO26 
-2.041 7057 
-2.1379101 
-2. I29 68 I 2  
-2.1 105214 
-2.091 4812 
-2.083 5241 

-1,7084507 
-1.7084506 
-1,7084507 
-1.7084306 
-1.7084507 
-1.7084507 
-1.708 4507 
-1.7084507 
-1,7084507 
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